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Abstract 

The interpretation of physical properties of incom- 
mensurate modulated crystals leads to the use of their 
point groups and their total character tables in their 
superspace~. Examples are chosen of point groups of 
holohedries of the two hypercubic crystal systems- 
primitive and body-centred- in  four-dimensional 
space. A geometrical presentation is given of the point 
group - including its character table - of the primitive 
hypercubic crystal system, as it is useful for the pre- 
diction and simplification of tensorial physical 
properties of the corresponding crystals. Through 
geometrical considerations, the exceptional splitting 
of the hypercubic family of E 4 into two crystal sys- 
tems is easily proved. Finally, the two different rela- 
tions - according to the parity of n - existing between 
the point group of the primitive hypercube of IF" and 
its subgroup of rotations are explained. 

Introduction 

Incommensurate modulated crystals do not show lat- 
tice periodicity in three-dimensional space. Accord- 
ingly, their macroscopic physical properties such as 
morphology, thermal expansion, etc. are no longer 
explained only by the symmetry of the basic 'crystal': 

On modulated single crystals of Rb2ZnBr4 and 
Rb2ZnCI4, satellite faces have been observed which 
can be interpreted by the classical morphological 
theory which has been extended by including super- 
space-group symmetry (Janner, Rasing, Bennema & 
Linden, 1980; Rasing, 1982); 

The continuous variation of incommensurate 
wavelength as a function of the temperature added 
to the thermal expansion of the basic structure gives 
the complete thermal expansion of the crystal which 
is a tensorial physical p roper ty -o f  rank 2 - o f  the 
superspace (four, five or six dimensions). 

To simplify the understanding of physical proper- 
ties with the aid of symmetry, it is necessary to use 

*Present address: DRF-DN-CENG, 38041 Grenoble Cedex, 
France. 

the point-symmetry groups (PSGs) and their character 
tables in superspace as we do in three-dimensional 
space. 

In this paper, we choose the example of PSGs of 
the hypercube of E 4 since most of the 227 crystallo- 
graphic PSGs of four-dimensional space are sub- 
groups of it. This example is also interesting because 
the hypercubic crystal family of E 4 is particular: it 
splits into two crystal systems-primitive and body- 
centred (Neubilser, Wondratschek & Billow, 1971; 
Billow, Neubilser & Wondratschek, 1971 ; Wondrat- 
schek, Billow & Neubilser, 1971)-in contrast to the 
square, cubic and hypercubic crystal families of E 2, 
E 3 and higher-dimensional spaces E 5, E 6, etc. each of 
them giving only one crystal system. With the aid of 
geometry, we easily explain this anomaly in § IV. 

The hypercube, one of the six regular polytopes of 
the four-dimensional Euclidean space has been 
described geometrically by some authors such as 
Coxeter (1973). The list of symmetry operations of 
this polytope has been given by several authors, every 
type of element being characterized either by letters 
(Hurley, 1951) or by four symbols (Hermann, 1949). 
Brown, Billow, Neubilser, Wondratschek & Zassen- 
haus (1978) have established the character table of 
the group of order 384 isomorphic to the symmetry 
group of the hypercube: it is the group (32/21) of the 
family XXII. Because of the properties of the hyper- 
stereographic projection, Whittaker (1973, 1976) has 
described geometrically some of its elements and has 
in particular listed some planes about which the 
elementary rotations take place, i.e. the geometric 
supports of these operations. 

In this paper, we describe symmetry elements of 
the hypercube geometrically; we give all the twofold, 
threefold, fourfold, sixfold and eightfold rotation 
planes, i.e. the planes about which these rotations 
take place and all the hyperplanes of reflection for 
the negative symmetry operations; this point of view 
led us naturally to describe in a concrete way, through 
the geometry, the different classes of conjugate ele- 
ments for the symmetry group of the hypercube and 
for its rotation subgroup. We also give concrete 
illustrations of notions of geometrical supports of 
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point-symmetry operations (PSOs) in superspaces 
defined in the previous paper (Weigel, Veysseyre, 
Phan, Effantin & Billiet, 1984; referred to as paper I). 

I. G e o m e t r i c  d e s c r i p t i o n  o f  the  h y p e r c u b e  

The hypercube of the four-dimensional Euclidean 
space may be obtained by translating a cube situated 
in three-dimensional space along the line orthogonal 
to E 3 by a length equal to its side. It follows that it 
has 16 vertices or corners, 32 sides or edges, 24 faces, 
like any parallelotope of ~74 (Weigel, Veysseyre & 
Charon, 1980). 

In order to describe it analytically, we can choose 
a direct orthonormal basis (0, i, j, k, 1) such that the 
origin 0 is the centre of the hypercube, the 16 corners 
having coordinates (± 1, ± 1, ± 1, ± 1). This hypercube, 
whose side length is 2, is limited by eight equal cubes, 
each pair of them belonging to hyperplanes (i, j, k), 
(i, j, !) and so on. The centres of these 'elementary'  
cubes are the points 0~ whose three coordinates are 
0, the fourth being +1 or -1 ,  for instance the point 
( 0 , -  l, 0. 0). 

Order of the symmetry group of the hypercube 

We record (Weigel et al., 1980), if a l , . . . ,  a,  are n 
points of  a polytope in an n-dimensional Euclidean 
space defining with an invariant point 0 of this poly- 
tope a true basis, the order of the symmetry group of 
this polytope is given by the formula 

N = N(a,)Na~(aO...  Na,(a,a2a3... a,_,),  

where N,,,(a, a2.. .ai-i) is the number of mappings of 
the vertex ai when the points ata2. . ,  a+_~ are fixed, 
i.e. the number of vertices of the polytope situated at 
the same distance from a~ as a~, from a2 as a~, from 
a 3 as ai, etc. 

Before considering the hypercube, we take simple 
examples in order to explain this formula: 

In E 2 the square: we choose (0ata2) as basis (see 
Fig. l) and we find N(aO = 4; Na~(a~) = 2, the vertices 
aEa4 are at the same distance from the point a~; hence: 
N = 4 x 2 = 8 .  

I n  [F 3 the cube or the octahedron: we can visualize 
the octahedron as the figure formed by six points 
equidistant from the point 0, the three axes a~ a4, aEas, 
a3a6, being orthogonal two by two (see Fig. 2). We 
choose (Oa~a:a3) as a basis and we find: N ( a , ) = 6 ;  

a l  a 2 

/ / /  \ \ \ \ J  
a4 a 5 

Fig. 1. Square in E:. 

Na~(a ~) = 4; the vertices a2 as a5 a6 are equidistant from 
the point a, ;  Na3(ata2)= 2, the vertices a3a2asa 6 are 
equidistant from the point a,, the vertices a3ala4a 6 
are equidistant from the point a2, thus a 3 and a 6 are 
equidistant from a~ and a2; hence N = 6 x4  x2  = 48. 

In [E 4 w e  now consider the hypercube; let the points 
0 AIA2A3A9 be chosen as basis (see Fig. 3): N(Ai )= 
16, the 16 vertices are equidistant from the centre 0; 
NA~(AI)=4, the vertices A2A4AsA9 are equi- 
distant from At;  NA3(A,A~)=3; the vertices 
A3A6A8AloAI2AI 3 are equidistant from A~, the ver- 
tices A~AsA6AIo are equidistant from A2, therefore 
A3A6Ato are  equidistant from Al on one hand and 
from A2 on the other; NA~(AIA2A3)=2 because 
A2AaAsA 9 are  equidistant from A~, A4AsA7A9A 1 iAi4 
are equidistant from A2, AsA9AI4AI6 are equidistant 
f rom A3, thus As and A 9 are equidistant from A~A2 
and A3; and finally: N =  1 6 x 4 x 3  x 2 = 3 8 4 .  

Therefore, we find by using a simple geometric 
method that the point-symmetry group of the hyper- 
cube of E 4 contains 384 point-symmetry operations.* 

Table 1 summarizes all these results. 

Subgroup of rotations ( PSO ÷) subset of ( PSO-) 

Arr/ortg the symmetry operations, there appear rota- 
tions or PSO ÷ and also PSO-. Indeed, the reflection 
through a hyperplane orthogonal to an axis M~x for 
instance is really an element of symmetry of this 

* There exists a formula which gives the order of the symmetry 
group of the hypercube: 2"n! (Coxeter, 1973), where n denotes 
the dimension of the space. We find again for the hypercube: 
24 x4! = 384. But our proof is very easy and our formula is good 
for any polytope of any space. 

el 
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Fig. 2. Regular octahedron in E s. 
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Fig. 3. Hypercube in E 4. 
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Table 1. Order of  point group of  regularpolytopes with the symmetry of  square, cube, hypercube, etc. 

Polytopes 
Dimension of 

Euclidean space 
Nt 
N2(al) 
Na(a:a2) 
Na(ala2a3) 
N5( a I a2 a3 a4) 
Order 
Bravais type 

of cells 
Holohedric point 

group of crystal 
systems 

Regular Hypercube Regular 
Regular Hyper- with 8 cubic Hyper- 

Square octahedron Cube octahedron Hypercube hyperpyramids octahedron Hypercube 

2 3 3 4 4 4 5 5 
4 6 8 8 16 24 10 32 
2 4 3 6 4 8 8 5 

2 2 4 3 3 6 4 
2 2 2 4 3 

2 2 
8 48 48 384 384 1152 3840 3840 

Square Cubic Hypercubic Hypercubic 
p P, F and I P Z-centred Hypercubic 

4ram 4/ m ~3 2/ m or Oh 

h y p e r c u b e :  A l  has for mapping A2, A3 has for map- 
ping A4,  and so on. 

Considering that there exists at least one PSO-, we 
easily show that the set of PSO ÷ is an invariant 
subgroup of index 2. So there are 192 PSO ÷ and also 
192 PSO-. 

II. Symmetry elements of the hypercube 

In order to simplify the presentation of this paper we 
first consider the 48 elements of the cube of II :3 and 
we then generalize them to the space ~:4. 

PSO + or rotations of  the hypercube 

Rotation identity 1 
Rotation or (total) homothetie (-1).  We recall in 

four-dimensional space that the total homothetie -1  
is an entirely degenerate rotation 2~2 ~, the support of 
which is therefore not defined. 

Elementary threefold rotation. Consider the ternary 
axes of any 'elementary' cube, i.e. its four diagonals. 
To each axis corresponds, for the hypercube, a plane 
about which the rotation takes place or the geometric 
support* of this rotation: this plane is defined by one 
diagonal, A IA7 for instance, written x + y + z (instead 
of i +j  + k  for simplicity) and by the axis 1 orthogonal 
to the hyperplane where the cube is situated and 
written t for the same reason. 

For each of these planes, there exists only one 
orthogonal plane (which intersects the first only at 
the point 0): it is the plane of rotation,t i.e. the plane 
in which the rotation through angle 27r/3 takes place. 

The plane orthogonal to the plane (x +y  + z, t) may 
be described by ( x - y ,  x - z ) ,  a simplified way of 
writing (i - j ,  i - k). 

* Being an elementary PSO (a single rotation) these planes are 
actually the geometric supports of  these symmetry operations (see 
paper 1). 

t W e  recall that the rotation plane always means the plane in 
which the rotation takes .place. 

Now, let the number of these elements be counted; 
for each one of the four types of 'elementary' cubes 
we can define four planes and then two angles of 
rotation, i.e. 4 x4 x2 = 32 elements, hence: 

32 ELEMENTARY PSO ÷ written briefly 31 or2 x +  y , x = l = Z  • 

We find two choices for the angle 31 or 32, four for 
the letters which do not appear in the writing of the 
rotation* and four choices for all possible combina- 
tions of signs (++) ( + - )  ( - + )  ( - - ) ,  i.e. 2 x4 x 4 =  32. 

Elementary twofold and fourfold rotations. In the 
same way, from the three fourfold axes of an 
'elementary' cube, for instance x, y, z, for the cube 
A,A2A3A4AsA6ATAs, we define three planes about 
which rotations through angles +2~r/4 take place. 
For the hypercube these planes are the planes xt, yt, 
zt; they are geometric supports of the corresponding 
PSO; thus the three planes of rotations are the planes 
yz, xz, xy, orthogonal to the previous planes. For the 
whole of the hypercube, we shall obtain (3 x4)/2  = 6 
planes (each plane is counted twice). These planes of 
rotation are parallel to the faces of the hypercube. 
As there are two possible angles of rotation, we find: 
6 x2 = 12 elements. Hence: 

,41 or3  12 ELEMENTARY PSO ÷ -xy • 

This formula gives (24) = 6 choices for the pair (xy) 
and two choices for the angle. 

In the same way, we find six planes of rotation 
27r/2, i.e. 

6 ELEMENTARY PSO ÷ 2~y. 

We recall that 2~y is the rotation through the angle 
27r/2 in the plane (xy), i.e. the plane (ij). 

From the six binary axes of an elementary cube, 
the lines joining the middles of opposite edges, we 
define for the hypercube six planes of rotation (2rr/2) 
associated with this cube, i.e. 6 × 4 = 24 planes for the 

:~For instance, the letter t for the rotations 3 ~°'2 which x ±  y , x ± z  

generalize the eight rotations .~0,2 of  the cube in F3. ~ x ± y ± z  
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whole. For instance, let the axis joining the middles 
of A,A2 and A7A8 be considered; a vector of this 
axis is the vector j + k written y + z; the rotation takes 
place about the plane ] + k, I or y + z, t; the plane of 
rotation, orthogonal to this plane, is defined by the 
vectors j - k  and i, for instance, which are written 
( y - z )  and x. Then, one of these rotations through 

' and we define the angle rr is denoted 2y-z:x 

24 E L E M E N T A R Y  PSO + ' 2x±y:z. 

We may choose the pair (x, y) in (~)= 6 ways; then 
we have two choices for the sign + or - and again 
two choices for the last letter z or t, i.e. 6 x2  x2  = 24 
elements. 

Finally, the products of previous elements give 

12 E L E M E N T A R Y  PSO + ' x ± y , z : t :  t ,  

For the planes (xy, zt) there are three different combi- 
nations: (xy, zt) (xz, yt)(xt, yz) and four for the signs 
(++) (+-) (-+) (--).  

Non-elementary fourfold rotations of type 2'4 '  or3 
The product of elements 2' and 4' or3 gives 

12 N O N - E L E M E N T A R Y  PSO + 9'  a '  or3 ~" xy 1 Zt 

This is the product of a rotation through an angle 
rr about the plane (xy) by a rotation through an angle 
2rr /4 about the plane (zt) orthogonal to the previous 
plane. 

We really obtain 12 elements as there are (~)= 6 
choices for a plane (xy), the other (zt) being well 
defined and two choices for the angle 4' or  43 . 

Non-elementary fourfold rotations of types 4143 or 
434 ' . The products of previous elements give 

6 N O N - E L E M E N T A R Y  PSO + , 3 3 , 4xy4z, and 4,,y4z,. 

We have already shown that there are three differ- 
ent manners of choosing the pairs of planes of  rotation 
and then two choices for the angles. 

Non-elementary and degenerate rotations of type 
4'4 '  or 4343. We have seen (paper I) that a double 
rotation through the same angle about two orthogonal 
planes is degenerate and that the supports of elemen- 
tary rotations, namely the two orthogonal planes, are 
not defined in a unique manner. This is the reason 
why we write these elements ' ' 4xy4zr, for instance: 

X = A x - ~ I ~ z  Z = I . £ x - I - A z  A 2 "[-/./, 2 =  1 

Y = ay +/xt T = - /xy  +At A,/z ~ R. 

Hence: 

6 N O N - E L E M E N T A R Y  A N D  D E G E N E R A T E  
PSO + , , 3 3 4xy4zr  and 4xy4zr. 

These last two sets of six rotations form exactly one 
class of  conjugate elements for the symmetry group 

of the hypercube but form two different classes of 
conjugate elements for the subgroup of the rotations. 

Non-elementary sixfold rotations of type 216 t°r5 
Since the homothetie -1  may be considered as a 
product of two rotations through the angle 2rr/2 
about two orthogonal planes chosen arbitrarily, we 
obtain31 × h o m ( - 1 )  s i = 6,~t323"8, where (aft) and (y6) 
are two orthogonal planes. Hence: 

32 N O N - E L E M E N T A R Y  PSO ÷ 91 t;l or5 " - x + y ± z ,  t V x ± y , x + z  

are generated very simply from the elementary three- 
foldrota t ions .  In fact, to every 3 '°r2, we associated 
only one element 2' thus 2 ; 3y-z,y+, gives 

I I 
2y+z-t, xay-z,y+t. 

Non-elementary eightfold rotations of type 88. These 
elements belong to two classes of conjugate elements. 

, -3 8 ~ 8 '  The rotations of types 8~83"8 or 3"8. For these 
elements, the rotation planes are defined as 

a = ( x  +y )  +x/2 t V = ( x  + y ) - v / 2  t 

/3 = ( x - y ) - x / 2  z 8 = ( x - y )  +x/2 z 

with all the possible permutations of the letter x, y, 
z, t. As soon as a is chosen, so are/3, "),, 6. Now, to 
determine a, we have six choices for (xy) as we have 
already seen and then two choices for the last letter 
z or t, i.e. 6 x 2 =  12 families of orthogonal planes. 
We have two possible choices for the first angle rr/4 
(8') or 5rr /4 (8-3). Hence: 

24 N O N - E L E M E N T A R Y  PSO + 8'a/3 8 3'8-3 or 8~,~38'va, 

a,/3, y, 8 being defined as previously. 
In the same way, we determine 

+ , 3 3 , 24 N O N - E L E M E N T A R Y  PSO 8,,t383"a or 8,~1383"a, 

the rotation planes being those which have just been 
defined. 

We see that in the first case the angles of rotation 
differ from rc and in the second case from rr/2. 

Same comment as for case 44. One class of conju- 
gate elements for the symmetry group of the hyper- 
cube gives two classes for the rotation group. 

Table 2 gives the list of the 192 rotations of the 
hypercube. 

PSO- or improper rotations of the hypercube 

8 PSO- are easy to illustrate. 

4 E L E M E N T A R Y  PSO- 1' x y z  

These are homotheties of dimension 3 about a hyper- 
plane orthogonal to an axis. 

4 E L E M E N T A R Y  PSO- M~ 

Reflexions about a (mirror) hyperplane orthogonal 
to an axis or partial homothetie of dimension 1. 
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Table 3. The 192 PSO-s of  the hypercube of  E ~ 

They  be long  to nine classes o f  conjugate  elements.  

Table 2. The 192 PSO+s of  the hypercube of  E 4 

They  be long  to 11 classes o f  conjugate  elements  for  the group  o f  
the hype rcube  but  to 13 for  its subgroup o f  rotat ions.  

Schoenflies 
Schoenflies Hermann-Mauguin generalized 

PSO ÷ Her0Aann-Mauguin generalized PSO- generalized notation notation ? 
(rotations) generalized notation notation :~ 4 PSO- e il 4i C7 xyz  

! PSO + e + d  I E C I  12 P S O -  e i~±>..z.t 12i C 4  

- I  M ~  I PSO + e + d *  14 j C 6  4 P S O -  e 4tr  C9  

M x ±  v 12o- 6 PSO + e 2!~. 6 C  2 C5  12 P S O -  e I C3  

I 12C 2 C 2 32 P S O -  ne  i l o~2 32t rC 3 C I 9  12 PSO + e 2~±.,.,~±t M t 3 ~ ± r . x ± z  

24 PSO + e I 2 4 C  2 C8  32 P S O -  n e  J l o t 5  32o-C 6 C 2 0  2 x ± y :  M x + y + z 6 x ± y , x ± z  

• . M z 4 x y  24crC 4 C 10 12 PSO + e 4 1  °r3 12C 4 C11 2 4 P S 0 -  n e  i io~3 

71 4 l ° r 3  M I 4 I°r3 48o-C 4 C12  12 PSO + n e  - x y - z t  12C2C 4 C I 5  48 P S O -  n e  Di ¢,itJi 

l I 3 24 P S O -  ne  M l 4 I°r3 24o-C 4 C 1 4  
12 PSO + 6 ne  4xy4z~ 12C4C 4 C13 z±t ~. 

i i t 
6 ne  + d 4 x y 4 z -  r N o t e s :  

I I - 3  --3 I 
24 ne 8'~t38Vnl 3 or 8=~8v~3 ~ 48CSC 8 Ci6 e: e lementa ry  PSO;  ne:  non-e lementa ry  PSO; d:  degenera te  PSO. 

48 PSO ÷ 24 ne  8,~t~8vn or 8,,~8v~ Notat ion:  
I or2 3 2 C  3 C I 7  32 PSO + e 3x±y.x±z 

32PSO + 2:~ . . . . .  6~xz;.~x±z 32C2C 6 Cl8 i',D M ~ =  tr: T~D-  ~ - ,e  = - - 2 x y -  C2; T ~ D = i x y ~  = i; I ~ D = i ~ =  j. 

N o t e s :  ~ See footnote to Table 2. 
e: e lementa ry  PSO; ne:  non-e lementa ry  PSO" d: degenera te  PSO. 
Notat ion:  

T~.D = M~=~; T~D=2~y = C2: T3~D= Txyz = i; T4~D = T~=j. 

* We recall that in ~4, the homothetie -1 ,  called T~ or j, is a rotation which 
may be written 2~2 ' but whose support is not defined (PSO entirely degen- 
erate). 

tThis is a degenerate PSO, so we recall that (XY), (ZT) are not unique 
but verify the relations given in § II. 

This column gives the number of classes of conjugate elements used in 
Brown et al. (1978). 

All the other PSO- of the hypercube are obtained 
by finding the products of elementary rotations of the 
cube with a reflexion about a correctly chosen hyper- 
plane which is equivalent to the product of the follow- 
ing matrices (in a correct basis): 

1 

/tO 

So we obtain: 

12 ELEMENTARY P S O -  ii+y,z,t • 

There are six manners of choosing the pair (x, y), 
then two choices for the sign. We can also write these 
12 PSO-: l 2x±y, zM, but this notation is improper 
because it gives priority to one of the axes of the 
space E 3 in which the PSO- homothetie -1 is totally 
degenerate. 

12 ELEMENTARY PSO- Mx+y 
/ i / f  1 2  1 o r 2  32 NON-ELEMENTARY PSO- ,,, t-,x±y,x±z. 

a~°r2 which are multi- We had found 32 elements ,,x±y,x±z 
plied by M I, t being the missing letter. 

AAri ~ 1  o r 5  32 NON-ELEMENTARY PSO- ,,, x+y+z-,x+y:+z 
A 1 o r 3  24 NON-ELEMENTARY PSO- Mlz±t~,xy • 

There are 12 elements ~tl o r  3 and one of the reflections - - x y  
1 I Mz+, or Mz-t  is associated with each of these. 

24 NON-ELEMENTARY PSO- /~4~zt~ or3 " "  z - -  x y  • 

One of the reflections Mlz or MI is associated with 
each of the 12 rotations at or 3 - - x y  • 

I A I  o r 3  48 NON-ELEMENTARY PSO- MD,-,,~,~, • 

The writing of these elements is a little complicated. 
Indeed, if D/ is one of the eight diagonals of the 
hypercube, the vectors directed along Di (i = 1 , . . . ,  8) 
are: x + y + z  + t ; x  + y + z - t ; x  + y - z  + t ; x - y + z  + 
t ; x + y - z - t ; x - y + z - t ; x - y - z + t ; x - y - z - t .  

(ai, fli) is a plane orthogonal to D~ and to one of 
the other three diagonals orthogonal to Di. Consider, 
for instance, the diagonal D~ ( x + y + z + t ) .  It is 
orthogonal to D2 (x + y  - z - t), to 03 (x - y  - 2 + t), 
to D4 (x - y  +z  - t). One of the planes (ai/3~) is defined 
by the vectors ( x - y ,  z - t )  orthogonal to the plane 
(D~/92); another is defined by the vectors (x - z, y - t) 
orthogonal to the plane (Dt D4). When the axis D~ is 
chosen, there are therefore three possibilities for the 
plane (a,/3) and two again for the angle 4 ~ o r  4 3. 

Hence, 8 × 3 × 2 = 48 elements. 
Let us write some of these: 

Mx A 1 o r 3  . ~ A 1 o r 3  . 
+ y - - z - - t - r x + y , x + t ,  ~ t r a x - - y + z + t ~ r X - - t , y + z  

We sum up the 192 PSO- of the hypercube in Table 3. 

III. Character table of the hypercube 

Our research of the point-symmetry operations of the 
hypercube has shown the different classes of conju- 
gate elements, but not all the classes of the rotation 
subgroup. 

The character table of the mathematical group 
isomorphic with the point group of the hypercube 



336 CRYSTALLOGRAPHY, GEOMETRY AND PHYSICS IN H I G H E R  DIMENSIONS.  II 

Table 4. Character table o f  the hypercube group in ~_4 

CI  C2 C3 C4 C5 C6 C7 C8 C9 C I 0  C I I  C12 C13 C14 C15 C16 C i 7  C18 C19 C20 
E 12C 2 120- 12i 6C2 j 4i 24C 2 40" 24o'C4 12C4 48o'(74 12C4C4 24o'(74 12C2C448CsC s 32C 3 32C2C6 320-C3 320"C 6 

R I 1 1 1 1 1 I 1 1 1 1 I i 1 ! I 1 1 I 
R 2 1 1 - 1  - 1  1 1 I - 1  1 - 1  - I  - 1  1 1 -1  - I  I 1 
R 3 1 1 1 1 1 1 - 1  - 1  - 1  1 - 1  1 1 - 1  - 1  - 1  1 1 
R 4 1 1 - 1  - 1  1 1 - 1  1 - 1  - 1  1 - I  1 - I  1 I I 1 
R5 2 2 0 0 2 2 2 0 2 0 0 0 2 2 0 0 - I  -1  
R6 2 2 0 0 2 2 - 2  0 - 2  0 0 0 2 - 2  0 0 - I - 1 
R7 3 - 1  1 1 3 3 3 1 3 1 1 - I  - 1  -1  1 - I  0 0 
R s 3 - 1  - 1  - 1  3 3 3 - 1  3 - 1  - 1  I - 1  - 1  - !  1 0 0 
R 9 3 - I  1 1 3 3 - 3  - I  - 3  1 - I  - 1  - I  I - 1  1 0 0 
Rio 3 - 1  - 1  - 1  3 3 - 3  1 - 3  - !  I 1 -1  I I - 1  0 0 
Rl l  4 0 2 --2 0 --4 --2 0 2 0 --2 0 0 0 2 0 I --I 
RI2 4 0 - 2  2 0 - 4  - 2  0 2 0 2 0 0 0 - 2  0 I - I  
Ri3 4 0 2 - 2  0 4 2 0 - 2  0 2 0 0 0 - 2  0 I - l  
Rl,~ 4 0 - 2  2 0 - 4  2 0 - 2  0 - 2  0 0 0 2 0 I - l 
Ris 6 - 2  0 0 - 2  6 0 - 2  0 0 2 0 2 0 2 0 0 0 
RI6 6 --2 0 0 --2 6 0 2 0 0 --2 0 2 0 --2 0 0 0 
RI7 6 2 - 2  - 2  - 2  6 0 0 0 2 0 0 - 2  0 0 0 0 0 
R18 6 2 2 2 - 2  6 0 0 0 - 2  0 0 - 2  0 0 0 0 0 
R19 8 0 0 0 0 - 8  - 4  0 4 0 0 0 0 0 0 0 - 1 I 
R2o 8 0 0 0 0 - 8  4 0 - 4  0 0 0 0 0 0 0 - I ! 

R~o 10 2 4 4 2 10 4 2 4 0 2 0 - 2  0 2 0 1 ! 
R~o 20 0 6 - 6  0 - 2 0  - 6  0 6 0 - 2  0 0 0 2 0 2 - 2  

lnvariants o f  the first, second and third order o f  a symmetrical tensor 
x, y, z, t belong to the representation Rt~. 

1 1 
I 1 

- 1  - 1  
- 1  - 1  
- 1  - 1  

1 1 
0 0 
0 0 
0 0 
0 0 

- I  1 
- 1  1 

1 - 1  
I - 1  
0 0 
0 0 
0 0 
0 0 
I -1  

- 1  1 

I 1 
0 0 

The ten components  of  a symmetrical tensor of  second order span a space of  dimension ten. We can define a representation of  dimension ten for the 
group of  the h percube called R '  • +y2 + + for R "x 2 ~ . .  2 2 . .  2 !~. its characters are given above. This representation is reducible: R' m = R~@RT~)RI8. Possible bases are: x 2 z 2 t 2 

~; ~ - y  ), tx - z  ), ~x - t  ) for RT; xy, XZ, Xt, yz, yt, zt for Rts. 
The 20 components  of  a symmetrical tensor of third order span a space of dimension 20. In the same way, we define a representation of  dimension 20 

for the group of  the hypercube called R~o; its characters are given above. This representation is reducible: R~o = Rlgt~ R ~ 3 ~ 2 R  ~1. Possible bases are: 
3x(2Y - z ') ,  3y(z 2 -  t2), 3z( t  2 - x2), 3t(x z _yZ), 3x(z 2 _ t2), 3y(t 2 _ x2), 3z(x 2 _y2), 3 t (y2_ z 2) for RI9 (89); X 3, y3, z3, t3 for one of  the representations R,I ;  
x(y  + z 2 + t2), y ( x  z + z 2 + t2), z(y 2 + t 2 + x2), t(x 2 + y2 + z z) for the other representation Rt ~ ; xyz xyt xzt yzt for the representation R j3. 

has been given by Brown et al. (1978). We give this 
table with the clear geometric meaning of the classes 
of conjugate elements. Further, using the theory of 
the projectors, we have found the invariants of the 
first, second and third order of a symmetrical tensor 
and so we obtain the whole character table: Table 4 
and its caption, where are indicated the components 
of the tensorial physical properties. 

Application 

The crystals are never ferroelectric and the 
molecules are non-polar (Weigel & Veysseyre, 1982) 
because none of the four coordinates of the vector 
"spontaneous polarization" or dipolar moment belong 
to the identity or trivial representation. 

The ten components of a symmetrical tensor of 
second order are reduced to only one; actually only 
x z + yZ + z z + t z belongs to the irreducible trivial rep- 
resentation and the hyperellipsoid associated with 
such a tensor of lEa i s  reduced to a sphere. We deduce 

L.~ I . ~ r -  L, , , ' /  
/ "  ~ I ' -  I l /  

,~1 V / 
Fig.  4. R i g h t  h y p e r p y r a m i d  wi th  a c u b i c  b a s i s  in E 4. 0f~ is 

o r t h o g o n a l  to  t he  h y p e r p l a n e  ~:3 w h i c h  c o n t a i n s  t he  c u b e  w h o s e  
0 is t h e  cen te r .  0.O is e q u a l  to  the  s ide  l eng th  o f  t he  cube .  

from this that the thermal expansion of such a crystal 
is isotropic or that the polarizability tensor of such a 
molecule is reduced to a scalar. 

The 20 components of a symmetrical tensor of third 
order are all zero for these two groups; actually, each 
of the components of a tensor of odd order belongs 
to a representation u (ungerade) having the character 
( -  1) for the degenerate rotation 'homothetie - 1'; they 
cannot therefore belong to the irreducible identity 
representation. Thus, such crystals cannot be 
piezoelectric in IE a . 

We must use the same method for the prediction 
of physical properties of any incommensurate crystal 
from its point group into its superspace.* 

IV. Point-symmetry group of holohedry for the second 
hypercubic crystal system of [~4 

The regular polytope of ~4 _ called '24 cells' (Coxeter, 
1973) - can be obtained by considering the 16 corners 
of a central hypercubic cell and the eight centres of 
the eight adjacent cells of a hypercubic Z (centred) 
lattice. This polytope contains eight cubic hyper- 
pyramids added to the central hype rcube - see  Fig. 
4; it is regular because the half diagonal of the 

* F o r  i n s t a n c e ,  the  m o l e c u l e  OTr s o b t a i n e d  b y  p u t t i n g  e igh t  a t o m s  
rr at  t he  s a m e  d i s t a n c e  f r o m  the  a t o m  12 on  f o u r  l ines  o r t h o g o n a l ,  
two  b y  two .  It  is i n s c r i b e d  in to  t he  h y p e r c u b e  o f  E 4, t he  e igh t  a t o m s  
o c c u p y i n g  the  e igh t  c e n t r e s  o f  the  e igh t  c u b e s  l i m i t i n g  the  
h y p e r c u b e .  
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hypercube of ~:4 equals the length of its side: 4(a/2) 2 -" 
a 2. Accordingly, its 96 (32 + 8 x 8) edges are equal and 
its 24 corners are equidistant from its centre. Con- 
sequently, all corners are equivalent. From our gen- 
eral f o r m u l a -  see § I - one very quickly finds the order 
of its symmetry group: 

n = 2 4 × 8  ×3 × 2 =  1152=384×3  (Table 1). 

Indeed, there are three ways of considering the eight 
tops of hyperpyramids among the 24 corners. So there 
are three sets of six fourfold planes of elementary 

,41 or3 rotations a /3 , . . ,  and there are 36 rotations -,~0 
instead of 12 for the symm.etry group of the hyper- 
c u b e -  see § I I -  and so on.* 

This distinctive f e a t u r e - t h e  half diagonal being 
equal to the side of the h y p e r c u b e - o n l y  occurs in 
four-dimensional space because n(a/2) 2= a 2 if and 
only if n = 4. It explains the exceptional splitting of 
the hypercubic family of ~4 into two crystal systems. 

Conclusion 

The previous results can be generalized in an obvious 
manner for n-dimensional space and we can express 
the following theorem: 

In the space of dimension n with n odd, the sym- 
metry group of the hypercube is the direct product 
of the rotation subgroup and of the binary group 1 
constituted by the identity and the total homothetie 
-1  which is here called 'inversion', i.e. the product 
of two scalar matrices. Thus, the PSO ÷ fall into the 
same classes of conjugate elements for the two groups 
(see for instance character tables of 4 /m 3 2 /m and 
432 of E3: PSG and rotation group of the cube). 

The same result is found in n :5 where the hypercube 
is bounded by ten hypercubes of n :4, the length of a 

* There are also rotations such as 12 ~ 12 5 which do not belong 
to the symmetry group of the hypercube. 

side being a and the centres being situated at a 
distance a/2 from the centre of the first hypercube 
on both sides of five lines orthogonal two by two. 

This result is not true for the spaces E n with n even 
as the homothetie -1  is in this case a rotation. It is 
easy to verify this property for the Abelian group of 
the rotations of the square in II :2 where the four ele- 
ments each belong to a class of conjugate elements, 
whereas they form only three classes in the PSG of 
the square in IE 2, 4ram, the three classes being E, 2 Ca, 
C2. In this paper we have also verified this property 
for the PSG of the hypercube of ~4 and for its rotation 
group. 

DW warmly thanks Professor A. Janner of the 
University of Nijmegen for fruitful discussions on 
these subjects. 
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